三角関数 (5回目)
2024/6/28(金)
三角関数 (5回目)
■ 定義
▼ 双曲線関数
y = sinh(t) = {exp(t)-exp(-t)}/2
y = cosh(t) = {exp(t)+exp(-t)}/2
▼ 備考
tanh-1(x)については(3回目)を参照
■ 結果
▼ 逆双曲線関数
t = sinh-1(y) = log(y + √{y2 + 1})
t = cosh-1(y) = ±log(y + √{y2 + 1})
▼ 双曲線関数(加法定理)
sinh(a±b) = sinh(a)cosh(b)±sinh(b)cosh(a)
cosh(a±b) = cosh(a)cosh(b)±sinh(a)sinh(b)
sinh(2a) = 2sinh(a)cosh(a)
cosh(2a) = cosh2(a) + sinh2(a)
▼ 双曲線関数(その他)
cosh(a)+1 = 2cosh2(a/2)
sinh(a) = 2sinh(a/2)cosh(a/2)
{cosh(a)+1}/sinh(a) = tanh(a/2)
■ 導出
▼ 逆双曲線関数
y = sinh(t) , y = cosh(t)
t = sinh-1(y) , t = cosh-1(y)
をlogで表す
(log = loge とする)
y = exp(x)
log(y) = x
y = sinh(t) = {exp(t)-exp(-t)}/2
2y = exp(t)-exp(-t)
2yexp(t) = exp(2t) - 1
exp(2t) - 2yexp(t) - 1 = 0
exp(t) = y±√{y2 + 1} ≧ 0
= y + √{y2 + 1} ≧ 0
t = log(y + √{y2 + 1})
y = sinh(t)
t = sinh-1(y) = log(y + √{y2 + 1})
y = cosh(t) = {exp(t)+exp(-t)}/2
2y = exp(t)+exp(-t)
2yexp(t) = exp(2t) + 1
exp(2t) - 2yexp(t) + 1 = 0
exp(t) = y±√{y2 - 1}
t = log(y±√{y2 - 1})
log(y - √{y2 - 1})
= log([y - √{y2 - 1}][y + √{y2 - 1}]/[y + √{y2 - 1}])
= log({y2 - (y2 - 1)}/[y + √{y2 - 1}])
= log(1/[y + √{y2 - 1}])
= -log(y + √{y2 - 1})
t = ±log(y+√{y2 - 1})
y = cosh(t)
t = cosh-1(y) = ±log(y + √{y2 + 1})
▼ 双曲線関数(加法定理)
sinh(a)cosh(b)
= {exp(a)-exp(-a)}{exp(b)+exp(-b)}/4
= {exp(a)exp(b)+exp(a)exp(-b)-exp(-a)exp(b)-exp(-a)exp(-b)}/4
sinh(b)cosh(a)
= {exp(b)-exp(-b)}{exp(a)+exp(-a)}/4
= {exp(b)exp(a)+exp(b)exp(-a)-exp(-b)exp(a)-exp(-b)exp(-a)}/4
sinh(a+b) = {exp(a+b)-exp(-a-b)}/2
= {exp(a)exp(b)-exp(-a)exp(-b)}/2
= sinh(a)cosh(b)+sinh(b)cosh(a)
sinh(a+b) = sinh(a)cosh(b)+sinh(b)cosh(a)
sinh(a-b) = sinh(a)cosh(-b)+sinh(-b)cosh(a)
= sinh(a)cosh(b)-sinh(b)cosh(a)
sinh(2a) = 2sinh(a)cosh(a)
sinh(a)sinh(b)
= {exp(a)-exp(-a)}{exp(b)-exp(-b)}/4
= {exp(a)exp(b)-exp(a)exp(-b)-exp(-a)exp(b)+exp(-a)exp(-b)}/4
cosh(a)cosh(b)
= {exp(a)+exp(-a)}{exp(b)+exp(-b)}/4
= {exp(a)exp(b)+exp(a)exp(-b)+exp(-a)exp(b)+exp(-a)exp(-b)}/4
cosh(a+b) = {exp(a+b)+exp(-a-b)}/2
= {exp(a)exp(b)+exp(-a)exp(-b)}/2
= cosh(a)cosh(b) + sinh(a)sinh(b)
cosh(a+b) = cosh(a)cosh(b) + sinh(a)sinh(b)
cosh(a-b) = cosh(a)cosh(-b) + sinh(a)sinh(-b)
= cosh(a)cosh(b) - sinh(a)sinh(b)
cosh(2a) = cosh2(a) + sinh2(a)
▼ 双曲線関数(その他)
cosh2(a) - sinh2(a)
= [{exp(a)+exp(-a)}2-{exp(a)-exp(-a)}2]/4
= [2exp(a)exp(-a)-{-2exp(a)exp(-a)}]/4
= 1
cosh2(a) - sinh2(a) = 1
cosh(a)+1 = cosh2(a/2) + sinh2(a/2) + 1
= cosh2(a/2) + sinh2(a/2) + cosh2(a/2) - sinh2(a/2)
= 2cosh2(a/2)
cosh(a)+1 = 2cosh2(a/2)
sinh(a) = 2sinh(a/2)cosh(a/2)
{cosh(a)+1}/sinh(a)
= 2cosh2(a/2)/{2sinh(a/2)cosh(a/2)}
= cosh(a/2)/sinh(a/2) = tanh(a/2)
{cosh(a)+1}/sinh(a) = tanh(a/2)
三角関数 (5回目)
■ 定義
▼ 双曲線関数
y = sinh(t) = {exp(t)-exp(-t)}/2
y = cosh(t) = {exp(t)+exp(-t)}/2
▼ 備考
tanh-1(x)については(3回目)を参照
■ 結果
▼ 逆双曲線関数
t = sinh-1(y) = log(y + √{y2 + 1})
t = cosh-1(y) = ±log(y + √{y2 + 1})
▼ 双曲線関数(加法定理)
sinh(a±b) = sinh(a)cosh(b)±sinh(b)cosh(a)
cosh(a±b) = cosh(a)cosh(b)±sinh(a)sinh(b)
sinh(2a) = 2sinh(a)cosh(a)
cosh(2a) = cosh2(a) + sinh2(a)
▼ 双曲線関数(その他)
cosh(a)+1 = 2cosh2(a/2)
sinh(a) = 2sinh(a/2)cosh(a/2)
{cosh(a)+1}/sinh(a) = tanh(a/2)
■ 導出
▼ 逆双曲線関数
y = sinh(t) , y = cosh(t)
t = sinh-1(y) , t = cosh-1(y)
をlogで表す
(log = loge とする)
y = exp(x)
log(y) = x
y = sinh(t) = {exp(t)-exp(-t)}/2
2y = exp(t)-exp(-t)
2yexp(t) = exp(2t) - 1
exp(2t) - 2yexp(t) - 1 = 0
exp(t) = y±√{y2 + 1} ≧ 0
= y + √{y2 + 1} ≧ 0
t = log(y + √{y2 + 1})
y = sinh(t)
t = sinh-1(y) = log(y + √{y2 + 1})
y = cosh(t) = {exp(t)+exp(-t)}/2
2y = exp(t)+exp(-t)
2yexp(t) = exp(2t) + 1
exp(2t) - 2yexp(t) + 1 = 0
exp(t) = y±√{y2 - 1}
t = log(y±√{y2 - 1})
log(y - √{y2 - 1})
= log([y - √{y2 - 1}][y + √{y2 - 1}]/[y + √{y2 - 1}])
= log({y2 - (y2 - 1)}/[y + √{y2 - 1}])
= log(1/[y + √{y2 - 1}])
= -log(y + √{y2 - 1})
t = ±log(y+√{y2 - 1})
y = cosh(t)
t = cosh-1(y) = ±log(y + √{y2 + 1})
▼ 双曲線関数(加法定理)
sinh(a)cosh(b)
= {exp(a)-exp(-a)}{exp(b)+exp(-b)}/4
= {exp(a)exp(b)+exp(a)exp(-b)-exp(-a)exp(b)-exp(-a)exp(-b)}/4
sinh(b)cosh(a)
= {exp(b)-exp(-b)}{exp(a)+exp(-a)}/4
= {exp(b)exp(a)+exp(b)exp(-a)-exp(-b)exp(a)-exp(-b)exp(-a)}/4
sinh(a+b) = {exp(a+b)-exp(-a-b)}/2
= {exp(a)exp(b)-exp(-a)exp(-b)}/2
= sinh(a)cosh(b)+sinh(b)cosh(a)
sinh(a+b) = sinh(a)cosh(b)+sinh(b)cosh(a)
sinh(a-b) = sinh(a)cosh(-b)+sinh(-b)cosh(a)
= sinh(a)cosh(b)-sinh(b)cosh(a)
sinh(2a) = 2sinh(a)cosh(a)
sinh(a)sinh(b)
= {exp(a)-exp(-a)}{exp(b)-exp(-b)}/4
= {exp(a)exp(b)-exp(a)exp(-b)-exp(-a)exp(b)+exp(-a)exp(-b)}/4
cosh(a)cosh(b)
= {exp(a)+exp(-a)}{exp(b)+exp(-b)}/4
= {exp(a)exp(b)+exp(a)exp(-b)+exp(-a)exp(b)+exp(-a)exp(-b)}/4
cosh(a+b) = {exp(a+b)+exp(-a-b)}/2
= {exp(a)exp(b)+exp(-a)exp(-b)}/2
= cosh(a)cosh(b) + sinh(a)sinh(b)
cosh(a+b) = cosh(a)cosh(b) + sinh(a)sinh(b)
cosh(a-b) = cosh(a)cosh(-b) + sinh(a)sinh(-b)
= cosh(a)cosh(b) - sinh(a)sinh(b)
cosh(2a) = cosh2(a) + sinh2(a)
▼ 双曲線関数(その他)
cosh2(a) - sinh2(a)
= [{exp(a)+exp(-a)}2-{exp(a)-exp(-a)}2]/4
= [2exp(a)exp(-a)-{-2exp(a)exp(-a)}]/4
= 1
cosh2(a) - sinh2(a) = 1
cosh(a)+1 = cosh2(a/2) + sinh2(a/2) + 1
= cosh2(a/2) + sinh2(a/2) + cosh2(a/2) - sinh2(a/2)
= 2cosh2(a/2)
cosh(a)+1 = 2cosh2(a/2)
sinh(a) = 2sinh(a/2)cosh(a/2)
{cosh(a)+1}/sinh(a)
= 2cosh2(a/2)/{2sinh(a/2)cosh(a/2)}
= cosh(a/2)/sinh(a/2) = tanh(a/2)
{cosh(a)+1}/sinh(a) = tanh(a/2)