積分の公式 (3回目)
202 5 / 10/25 (土 ) 積分の公式 ( 3 回目 ) ( integral ) ■ 公式 ▼ 三角関数 sin2x = 2sinxcosx cos2x = cos 2 x-sin 2 x = (1-sin 2 x)-sin 2 x = 1-2sin 2 x = cos 2 x-(1-cos 2 x) = 2cos 2 x-1 1-cosx = 2sin 2 (x/2) 1+cosx = 2cos 2 (x/2) ▼ 双曲線関数 sinh(x) = {exp(x)-exp(-x)}/2 cosh(x) = {exp(x)+exp(-x)}/2 tanh(x) = {exp(x)-exp(-x)}/{exp(x)+exp(-x)} ▼ 逆双曲線関数 y = tanh(x) = {exp(x)-exp(-x)}/{exp(x)+exp(-x)} exp(2x)-1 = yexp(2x)+y exp(2x)(1-y) = y+1 exp(2x) = (1+y)/(1-y) 2x = log|(1+y)/(1-y)| tanh -1 (y) = (1/2)log|(1+y)/(1-y)| ■ 微分 ▼ 逆双曲線関数の微分 2{tanh -1 (x)}' = {log|(1+x)/(1-x)|}' = {(1+x)/(1-x)}'{(1-x)/(1+x)} = [(1+x)'{1/(1-x)}+{(1+x){1/(1-x)}']{(1-x)/(1+x)} = [{1/(1-x)}+{(1+x)(-1){-1/(1-x) 2 }]{(1-x)/(1+x)} = [{1/(1-x)}+{(1+x)/(1-x) 2 }]{(1-x)/(1+x)} = {1+(1+x)/(1-x)}/(1+x) = {(1-x)+(1+x)}/{(1-x)(1+x)} = 2/(1-x 2 ) {tanh -1 (x)}' = 1/(1-x 2 ) ▼ 逆双曲線関数の微分の応用 {tanh -1 (sinx)}' = (sinx)'{1/(1-sin 2 x)} = cosx(1/cos 2 x) = 1/cosx {tanh -1 (c...