積分
2025/2/4(火)
積分
(integral)
■ xnの積分公式の導出
▼ 積分をΣで表す
∫0x f(x) dx = lim n→∞ Σk=0n (x/n)f(kx/n)
▼ f(x) = x のとき
Σk=0n k = Σk=1n k = n(n+1)/2
∫0x x dx
= lim n→∞ Σk=0n (x/n)(kx/n)
= lim n→∞ (x2/n2)Σk=0n k
= lim n→∞ (x2/n2)n(n+1)/2
= lim n→∞ (x2n2+x2n)/(2n2)
= lim n→∞ x2/2 + x2/(2n)
= x2/2
▼ f(x) = x2 のとき
Σk=1n k2 = n(n+1)(2n+1)/6
∫0x x2 dx
= lim n→∞ Σk=0n (x/n)(kx/n)2
= lim n→∞ (x3/n3)Σk=0n k2
= lim n→∞ (x3/n3)n(n+1)(2n+1)/6
= lim n→∞ x3(2n2+3n+1)/(6n2)
= lim n→∞ x3/3 + x3/(2n) + x3/(6n2)
= x3/3
▼ f(x) = x3 のとき
(Σk=1n k)2 = Σk=1n k3
∫0x x3 dx
= lim n→∞ Σk=0n (x/n)(kx/n)3
= lim n→∞ (x4/n4)Σk=0n k3
= lim n→∞ {(x2/n2)(Σk=0n k)}2
= {lim n→∞ Σk=0n (x/n)(kx/n)}2
= {∫0x x dx}2 = (x2/2)2
= x4/4
▼ f(x) = xn のとき
∫0x x dx = x2/2
∫0x x2 dx = x3/3
∫0x x3 dx = x4/4
…
∫0x xn dx = xn+1/(n+1)
■ Σの公式の導出
▼ Σk=1n k の導出
Σk=1n k = {(1+n)+(2+(n-1))+…+(n+1)}/2
= n(n+1)/2
= (n+1)n/2! = n+1C2
Σk=1n k = n(n+1)/2 = n+1C2
▼ Σk=1n k2 の導出
(n+1)3 - 1 = Σk=1n {(k+1)3 - k3} = Σk=1n (3k2 + 3k + 1)
Σk=1n k2
= {(n+1)3 - 1 - 3Σk=1n k - Σk=1n 1}/3
= {2(n+1)3 - 2 - 3n(n+1) - 2n}/6
= (n+1){2(n+1)2 - 3n - 2)}/6
= (n+1)(2n2 + 4n + 2 - 3n - 2)/6
= n(n+1)(2n+1)/6
= n(n+1){(n+2)+(n-1)}/6
= (n+2)(n+1)n/3! + (n+1)n(n-1)}/3!
= n+2C3 + n+1C3
Σk=1n k2 = n(n+1)(2n+1)/6 = n+2C3 + n+1C3
別解
Σk=1n k2 = S2(n) , Σk=1n k = S1(n)と置く
次の三角形(数の計)は3つともS2(5)を表している
1 5 5
2 2 4 5 5 4
3 3 3 3 4 5 5 4 3
4 4 4 4 2 3 4 5 5 4 3 2
5 5 5 5 5 1 2 3 4 5 5 4 3 2 1
これを三角柱状に上に重ねると
どの柱も2・5+1で柱の数はS1(5)本あるので
3S2(5) = S1(5)×(2・5+1) … 5をnに置き換えて
S2(n) = S1(n)×(2n+1)/3 = n(n+1)(2n+1)/6
▼ (Σk=1n k)2 = Σk=1n k3 の導出 13
+1
+2
+3
+4
…
+n
2(2・1+2) =
2(2+2) = 23
+2
+4
+6
+8
…
+2n
3{2(1+2)+3} =
3{(1+2)+(2+1)+3} = 33
+3
+6
+9
+12
…
+3n
4{2(1+2+3)+4} = 4{(1+3)
+(2+2)+(3+1)+4} = 43
+4
+8
+12
+16
…
+4n
…
…
…
…
…
…
…
n{2(1+…+n-1)+n} = n{
(1+n-1)+…+(n-1+1)+n} = n3
+n
+2n
+3n
+4n
…
+n2
■ xnの積分公式の導出
▼ 積分をΣで表す
∫0x f(x) dx = lim n→∞ Σk=0n (x/n)f(kx/n)
▼ f(x) = x のとき
Σk=0n k = Σk=1n k = n(n+1)/2
∫0x x dx
= lim n→∞ Σk=0n (x/n)(kx/n)
= lim n→∞ (x2/n2)Σk=0n k
= lim n→∞ (x2/n2)n(n+1)/2
= lim n→∞ (x2n2+x2n)/(2n2)
= lim n→∞ x2/2 + x2/(2n)
= x2/2
▼ f(x) = x2 のとき
Σk=1n k2 = n(n+1)(2n+1)/6
∫0x x2 dx
= lim n→∞ Σk=0n (x/n)(kx/n)2
= lim n→∞ (x3/n3)Σk=0n k2
= lim n→∞ (x3/n3)n(n+1)(2n+1)/6
= lim n→∞ x3(2n2+3n+1)/(6n2)
= lim n→∞ x3/3 + x3/(2n) + x3/(6n2)
= x3/3
▼ f(x) = x3 のとき
(Σk=1n k)2 = Σk=1n k3
∫0x x3 dx
= lim n→∞ Σk=0n (x/n)(kx/n)3
= lim n→∞ (x4/n4)Σk=0n k3
= lim n→∞ {(x2/n2)(Σk=0n k)}2
= {lim n→∞ Σk=0n (x/n)(kx/n)}2
= {∫0x x dx}2 = (x2/2)2
= x4/4
▼ f(x) = xn のとき
∫0x x dx = x2/2
∫0x x2 dx = x3/3
∫0x x3 dx = x4/4
…
∫0x xn dx = xn+1/(n+1)
■ Σの公式の導出
▼ Σk=1n k の導出
Σk=1n k = {(1+n)+(2+(n-1))+…+(n+1)}/2
= n(n+1)/2
= (n+1)n/2! = n+1C2
Σk=1n k = n(n+1)/2 = n+1C2
▼ Σk=1n k2 の導出
(n+1)3 - 1 = Σk=1n {(k+1)3 - k3} = Σk=1n (3k2 + 3k + 1)
Σk=1n k2
= {(n+1)3 - 1 - 3Σk=1n k - Σk=1n 1}/3
= {2(n+1)3 - 2 - 3n(n+1) - 2n}/6
= (n+1){2(n+1)2 - 3n - 2)}/6
= (n+1)(2n2 + 4n + 2 - 3n - 2)/6
= n(n+1)(2n+1)/6
= n(n+1){(n+2)+(n-1)}/6
= (n+2)(n+1)n/3! + (n+1)n(n-1)}/3!
= n+2C3 + n+1C3
Σk=1n k2 = n(n+1)(2n+1)/6 = n+2C3 + n+1C3
別解
Σk=1n k2 = S2(n) , Σk=1n k = S1(n)と置く
次の三角形(数の計)は3つともS2(5)を表している
1 5 5
2 2 4 5 5 4
3 3 3 3 4 5 5 4 3
4 4 4 4 2 3 4 5 5 4 3 2
5 5 5 5 5 1 2 3 4 5 5 4 3 2 1
これを三角柱状に上に重ねると
どの柱も2・5+1で柱の数はS1(5)本あるので
3S2(5) = S1(5)×(2・5+1) … 5をnに置き換えて
S2(n) = S1(n)×(2n+1)/3 = n(n+1)(2n+1)/6
▼ (Σk=1n k)2 = Σk=1n k3 の導出
13 | +1 | +2 | +3 | +4 | … | +n |
2(2・1+2) = 2(2+2) = 23 | +2 | +4 | +6 | +8 | … | +2n |
3{2(1+2)+3} = 3{(1+2)+(2+1)+3} = 33 | +3 | +6 | +9 | +12 | … | +3n |
4{2(1+2+3)+4} = 4{(1+3) +(2+2)+(3+1)+4} = 43 | +4 | +8 | +12 | +16 | … | +4n |
…
| … | … | … | … | … | … |
n{2(1+…+n-1)+n} = n{ (1+n-1)+…+(n-1+1)+n} = n3 | +n | +2n | +3n | +4n | … | +n2 |