積分の公式 (1回目)
2025/10/15(水)
積分の公式 (1回目)
(integral)
■ 積分(公式)
▼ 三角関数の公式
(sinθ)' = cosθ
(cosθ)' = -sinθ
sin2θ + cos2θ = 1
sin(α±β) = sinαcosβ±cosαsinβ
cos(α±β) = cosαcosβ∓ sinαsinβ
sin2α = 2sinαcosα
cos2α = cos2α - sin2α
= cos2α - (1 - cos2α) = 2cos2α - 1
= (1 - sin2α) - sin2α = 2sin2α + 1
▼ 導出
f(x) = √(r2 - j2x2)
x =(r/j)sinθと置く
dx/dθ = (r/j)cosθ, dx = (r/j)cosθdθ
θ = sin-1(jx/r)
sinθ = jx/r, cosθ = √(1 - sin2θ) = √(1 - j2x2/r2)
tanθ = (jx/r)/√(1 - j2x2/r2) = jx/√(r2 - j2x2)
θ = tan-1{jx/√(r2 - j2x2)}
F1 = ∫f(x)dx = ∫√(r2 - j2x2)dx
= ∫√(r2 - j2(r/j)2sin2θ)(r/j)cosθdθ
= (r/j)∫√{r2(1 - sin2θ)}cosθdθ
= (r/j)∫r√(cos2θ)cosθdθ
= (r2/j)∫cos2θdθ
= (r2/j)(1/2)∫(cos2θ + 1)dθ
= (r2/j)(1/2){(1/2)sin2θ + θ} + C
= (r2/j)(1/2){(1/2)2(sinθcosθ) + θ} + C
= j(r2/j2)(1/2){sinθ√(1 - sin2θ) + θ} + C
= j(1/2){(r/j)sinθ√((r2/j2) - (r2/j2)sin2θ) + (r2/j2)θ} + C
= j(1/2){x√((r2/j2) - x2) + (r2/j2)sin-1(jx/r)} + C
= (1/2){x√(r2 - j2x2) + (r2/j)sin-1(jx/r)} + C
= (1/2){x√(r2 - j2x2) + (r2/j)tan-1{jx/√(r2 - j2x2)} + C
F2 = ∫1/f(x)dx = ∫{1/√(r2 - j2x2)}dx
= ∫{1/√(r2 - j2(r/j)2sin2θ)}(r/j)cosθdθ
= (r/j)∫{1/√{r2(1 - sin2θ)}cosθdθ
= (1/j)∫{1/√(cos2θ)}cosθdθ
= (1/j)∫dθ
= θ/j + C
= (1/j)sin-1(jx/r) + C
= (1/j)tan-1{jx/√(r2 - j2x2)} + C
■ 結果
▼ 定義
f(x) = √(r2 - j2x2)
F1 = ∫f(x)dx = ∫√(r2 - j2x2)dx
F2 = ∫1/f(x)dx = ∫{1/√(r2 - j2x2)}dx
sin-1(jx/r) = tan-1{jx/√(r2 - j2x2)}
▼ 公式
∫√(r2 - j2x2)dx = (1/2){x√(r2 - j2x2) + (r2/j)sin-1(jx/r)} + C
∫{1/√(r2 - j2x2)}dx = (1/j)sin-1(jx/r) + C
積分の公式 (1回目)
(integral)
■ 積分(公式)
▼ 三角関数の公式
(sinθ)' = cosθ
(cosθ)' = -sinθ
sin2θ + cos2θ = 1
sin(α±β) = sinαcosβ±cosαsinβ
cos(α±β) = cosαcosβ∓ sinαsinβ
sin2α = 2sinαcosα
cos2α = cos2α - sin2α
= cos2α - (1 - cos2α) = 2cos2α - 1
= (1 - sin2α) - sin2α = 2sin2α + 1
▼ 導出
f(x) = √(r2 - j2x2)
x =(r/j)sinθと置く
dx/dθ = (r/j)cosθ, dx = (r/j)cosθdθ
θ = sin-1(jx/r)
sinθ = jx/r, cosθ = √(1 - sin2θ) = √(1 - j2x2/r2)
tanθ = (jx/r)/√(1 - j2x2/r2) = jx/√(r2 - j2x2)
θ = tan-1{jx/√(r2 - j2x2)}
F1 = ∫f(x)dx = ∫√(r2 - j2x2)dx
= ∫√(r2 - j2(r/j)2sin2θ)(r/j)cosθdθ
= (r/j)∫√{r2(1 - sin2θ)}cosθdθ
= (r/j)∫r√(cos2θ)cosθdθ
= (r2/j)∫cos2θdθ
= (r2/j)(1/2)∫(cos2θ + 1)dθ
= (r2/j)(1/2){(1/2)sin2θ + θ} + C
= (r2/j)(1/2){(1/2)2(sinθcosθ) + θ} + C
= j(r2/j2)(1/2){sinθ√(1 - sin2θ) + θ} + C
= j(1/2){(r/j)sinθ√((r2/j2) - (r2/j2)sin2θ) + (r2/j2)θ} + C
= j(1/2){x√((r2/j2) - x2) + (r2/j2)sin-1(jx/r)} + C
= (1/2){x√(r2 - j2x2) + (r2/j)sin-1(jx/r)} + C
= (1/2){x√(r2 - j2x2) + (r2/j)tan-1{jx/√(r2 - j2x2)} + C
F2 = ∫1/f(x)dx = ∫{1/√(r2 - j2x2)}dx
= ∫{1/√(r2 - j2(r/j)2sin2θ)}(r/j)cosθdθ
= (r/j)∫{1/√{r2(1 - sin2θ)}cosθdθ
= (1/j)∫{1/√(cos2θ)}cosθdθ
= (1/j)∫dθ
= θ/j + C
= (1/j)sin-1(jx/r) + C
= (1/j)tan-1{jx/√(r2 - j2x2)} + C
■ 結果
▼ 定義
f(x) = √(r2 - j2x2)
F1 = ∫f(x)dx = ∫√(r2 - j2x2)dx
F2 = ∫1/f(x)dx = ∫{1/√(r2 - j2x2)}dx
sin-1(jx/r) = tan-1{jx/√(r2 - j2x2)}
▼ 公式
∫√(r2 - j2x2)dx = (1/2){x√(r2 - j2x2) + (r2/j)sin-1(jx/r)} + C
∫{1/√(r2 - j2x2)}dx = (1/j)sin-1(jx/r) + C