積分の公式 (2回目)
2025/10/20(月)
積分の公式 (2回目)
(integral)
■ 積分(応用)
▼ 三角関数
f(θ) = cosθ + isinθ
f'(θ) = -sinθ + icosθ
if'(θ) = -isinθ - cosθ = -f(θ)
f(θ) = -if'(θ) … ①
f(θ) = exp(iθ)と置くと
f'(θ) = iexp(iθ)
if'(θ) = -exp(iθ) = -f(θ)
f(θ) = -if'(θ)
で式①を満たす
exp(iθ) = cosθ + isinθ
exp(-iθ) = cosθ - isinθ
sinθ = {exp(iθ) - exp(-iθ)}/(2i)
cosθ = {exp(iθ) + exp(-iθ)}/2
tanθ = {exp(iθ) - exp(-iθ)}/{exp(iθ) + exp(-iθ)}i
▼ 双曲線関数
sinhθ = {exp(θ) - exp(-θ)}/2
coshθ = {exp(θ) + exp(-θ)}/2
tanhθ = {exp(θ) - exp(-θ)}/{exp(θ) + exp(-θ)}
▼ 混合
isin(iθ) = {exp(-θ)-exp(θ)}/2 = -sinhθ
cos(iθ) = {exp(-θ)+exp(θ)}/2 = coshθ
itan(iθ) = {exp(-θ)-exp(θ)}/{exp(-θ)+exp(θ)} = -tanhθ
▼ 双曲線関数
y = tanhθ = -itan(iθ)
iy = tan(iθ)
iθ = tan-1(iy)
θ = -itan-1(iy) = tanh-1y
▼ √(r2 + x2)
∫√(r2 + x2)dx
∫√(r2 - j2x2)dx = (1/2){x√(r2 - j2x2) + (r2/j)sin-1(jx/r)} + C
= (1/2){x√(r2 - j2x2) + (r2/j)tan-1{jx/√(r2 - j2x2)}} + C
j = i, -itan-1(iy) = tanh-1y
∫√(r2 - j2x2)dx = ∫√(r2 + x2)dx
= (1/2){x√(r2 - i2x2) + (r2/i)tan-1{ix/√(r2 - i2x2)}} + C
= (1/2){x√(r2 + x2) - r2itan-1{ix/√(r2 + x2)}} + C
= (1/2){x√(r2 + x2) + r2tanh-1{x/√(r2 + x2)}} + C
▼ √(r2 - x2)
∫√(r2 - x2)dx
∫√(r2 - j2x2)dx = (1/2){x√(r2 - j2x2) + (r2/j)sin-1(jx/r)} + C
= (1/2){x√(r2 - j2x2) + (r2/j)tan-1{jx/√(r2 - j2x2)}} + C
j = 1
∫√(r2 - j2x2)dx = ∫√(r2 - x2)dx
= (1/2){x√(r2 - 12x2) + (r2/1)tan-1{1・x/√(r2 - 12x2)}} + C
= (1/2){x√(r2 - x2) + r2tan-1{x/√(r2 - x2)}} + C
▼ 1/√(r2 + x2)
∫{1/√(r2 + x2)}dx
∫{1/√(r2 - j2x2)}dx = (1/j)sin-1(jx/r) + C
= (1/j)tan-1{jx/√(r2 - j2x2)} + C
j = i, -itan-1(iy) = tanh-1y
∫{1/√(r2 - j2x2)}dx = ∫{1/√(r2 + x2)}dx
= (1/i)tan-1{ix/√(r2 - i2x2)} + C
= -itan-1{ix/√(r2 + x2)} + C
= tanh-1{x/√(r2 + x2)} + C
▼ 1/√(r2 - x2)
∫{1/√(r2 - x2)dx}
∫{1/√(r2 - j2x2)}dx = (1/j)sin-1(jx/r) + C
= (1/j)tan-1{jx/√(r2 - j2x2)} + C
j = 1
∫{1/√(r2 - j2x2)}dx = ∫{1/√(r2 - x2)}dx
= (1/1)tan-1{1・x/√(r2 - 12x2)} + C
= tan-1{x/√(r2 - x2)} + C
■ 結果
▼ 定義域
xの定義域に注意
▼ 公式
∫√(r2 + x2)dx = (1/2){x√(r2 + x2) + r2tanh-1(x/√(r2 + x2))} + C
∫√(r2 - x2)dx = (1/2){x√(r2 - x2) + r2tan-1(x/√(r2 - x2))} + C
∫{1/√(r2 + x2)}dx = tanh-1{x/√(r2 + x2)} + C
∫{1/√(r2 - x2)}dx = tan-1{x/√(r2 - x2)} + C
積分の公式 (2回目)
(integral)
■ 積分(応用)
▼ 三角関数
f(θ) = cosθ + isinθ
f'(θ) = -sinθ + icosθ
if'(θ) = -isinθ - cosθ = -f(θ)
f(θ) = -if'(θ) … ①
f(θ) = exp(iθ)と置くと
f'(θ) = iexp(iθ)
if'(θ) = -exp(iθ) = -f(θ)
f(θ) = -if'(θ)
で式①を満たす
exp(iθ) = cosθ + isinθ
exp(-iθ) = cosθ - isinθ
sinθ = {exp(iθ) - exp(-iθ)}/(2i)
cosθ = {exp(iθ) + exp(-iθ)}/2
tanθ = {exp(iθ) - exp(-iθ)}/{exp(iθ) + exp(-iθ)}i
▼ 双曲線関数
sinhθ = {exp(θ) - exp(-θ)}/2
coshθ = {exp(θ) + exp(-θ)}/2
tanhθ = {exp(θ) - exp(-θ)}/{exp(θ) + exp(-θ)}
▼ 混合
isin(iθ) = {exp(-θ)-exp(θ)}/2 = -sinhθ
cos(iθ) = {exp(-θ)+exp(θ)}/2 = coshθ
itan(iθ) = {exp(-θ)-exp(θ)}/{exp(-θ)+exp(θ)} = -tanhθ
▼ 双曲線関数
y = tanhθ = -itan(iθ)
iy = tan(iθ)
iθ = tan-1(iy)
θ = -itan-1(iy) = tanh-1y
▼ √(r2 + x2)
∫√(r2 + x2)dx
∫√(r2 - j2x2)dx = (1/2){x√(r2 - j2x2) + (r2/j)sin-1(jx/r)} + C
= (1/2){x√(r2 - j2x2) + (r2/j)tan-1{jx/√(r2 - j2x2)}} + C
j = i, -itan-1(iy) = tanh-1y
∫√(r2 - j2x2)dx = ∫√(r2 + x2)dx
= (1/2){x√(r2 - i2x2) + (r2/i)tan-1{ix/√(r2 - i2x2)}} + C
= (1/2){x√(r2 + x2) - r2itan-1{ix/√(r2 + x2)}} + C
= (1/2){x√(r2 + x2) + r2tanh-1{x/√(r2 + x2)}} + C
▼ √(r2 - x2)
∫√(r2 - x2)dx
∫√(r2 - j2x2)dx = (1/2){x√(r2 - j2x2) + (r2/j)sin-1(jx/r)} + C
= (1/2){x√(r2 - j2x2) + (r2/j)tan-1{jx/√(r2 - j2x2)}} + C
j = 1
∫√(r2 - j2x2)dx = ∫√(r2 - x2)dx
= (1/2){x√(r2 - 12x2) + (r2/1)tan-1{1・x/√(r2 - 12x2)}} + C
= (1/2){x√(r2 - x2) + r2tan-1{x/√(r2 - x2)}} + C
▼ 1/√(r2 + x2)
∫{1/√(r2 + x2)}dx
∫{1/√(r2 - j2x2)}dx = (1/j)sin-1(jx/r) + C
= (1/j)tan-1{jx/√(r2 - j2x2)} + C
j = i, -itan-1(iy) = tanh-1y
∫{1/√(r2 - j2x2)}dx = ∫{1/√(r2 + x2)}dx
= (1/i)tan-1{ix/√(r2 - i2x2)} + C
= -itan-1{ix/√(r2 + x2)} + C
= tanh-1{x/√(r2 + x2)} + C
▼ 1/√(r2 - x2)
∫{1/√(r2 - x2)dx}
∫{1/√(r2 - j2x2)}dx = (1/j)sin-1(jx/r) + C
= (1/j)tan-1{jx/√(r2 - j2x2)} + C
j = 1
∫{1/√(r2 - j2x2)}dx = ∫{1/√(r2 - x2)}dx
= (1/1)tan-1{1・x/√(r2 - 12x2)} + C
= tan-1{x/√(r2 - x2)} + C
■ 結果
▼ 定義域
xの定義域に注意
▼ 公式
∫√(r2 + x2)dx = (1/2){x√(r2 + x2) + r2tanh-1(x/√(r2 + x2))} + C
∫√(r2 - x2)dx = (1/2){x√(r2 - x2) + r2tan-1(x/√(r2 - x2))} + C
∫{1/√(r2 + x2)}dx = tanh-1{x/√(r2 + x2)} + C
∫{1/√(r2 - x2)}dx = tan-1{x/√(r2 - x2)} + C