等速円運動 (3回目)
2025/12/7(日)
等速円運動 (3回目)
(uniform circular motion)
■ 等速円運動
▼ ベクトル3重積
A×(B×C)
= A×(ByCz-BzCy, BzCx-BxCz, BxCy-ByCx)
= (Ay(BxCy-ByCx) - Az(BzCx-BxCz),
(Az(ByCz-BzCy) - Ax(BxCy-ByCx),
(Ax(BzCx-BxCz) - Ay(ByCz-BzCy))
= (AyBxCy-AyByCx-AzBzCx+AzBxCz + (AxBxCx - AxBxCx), … (=0を足す)
AzByCz-AzBzCy-AxBxCy+AxByCx + (AyByCy - AyByCy), … (=0を足す)
AxBzCx-AxBxCz-AyByCz+AyBzCy + (AzBzCz - AzBzCz)) … (=0を足す)
= (Bx(AxCx+AyCy+AzCz) - Cx(AxBx+AyBy+AzBz),
By(AzCz+AxCx+AyCy) - Cy(AzBz+AxBx+AyBy),
Bz(AxCx+AyCy+AzCz) - Cz(AxBx+AyBy+AzCz))
= (A・C)B-(A・B)C
A×(B×C) = (A・C)B-(A・B)C
▼ 角速度ω
ω = (0, 0, ω)
R = (x, y, z) = (rcosωt, rsinωt, 0)
V = ω×R
= (ωyz-ωzy, ωzx-ωxz, ωxy-ωyx)
= (-ωzy, ωzx, 0)
= (-ωy, ωx, 0)
A = ω×V
= (ωyvz-ωzvy, ωzvx-ωxvz, ωxvy-ωyvx)
= (-ωzvy, ωzvx, 0)
= (-ω(ωx), ω(-ωy), 0)
= (-ω2x, -ω2y, 0)
A = ω×(ω×R) = (ω・R)ω - (ω・ω)R … (ω⊥R)より
= -(ω・ω)R
= -|ω|2R
▼ 向心力F
r = √(x2 + y2)
v = |V| = |ω × R| = √{(-ωy)2 + (ωx)2}
= ω√(y2 + x2) = rω
ω = v/r
F = mA = m(ax, ay, az) = m(-ω2x, -ω2y, 0) = (-mω2x, -mω2y, 0)
|F| = F・F = √{(-mω2x)2 + (-mω2y)2} = mω2√(x2 + y2)
= mrω2 = mr(v/r)2 = mv2/r
■ 結果
▼ 角速度ω
ω = (0, 0, ω)
R = (x, y, z) = (rcosωt, rsinωt, 0)
V = ω × R = (-ωy, ωx, 0)
A = ω × V = (-ω2x, -ω2y, 0)
A = ω×(ω×R) = -|ω|2R
▼ 向心力F
F = mA = (-mω2x, -mω2y, 0)
|F| = mv2/r
等速円運動 (3回目)
(uniform circular motion)
■ 等速円運動
▼ ベクトル3重積
A×(B×C)
= A×(ByCz-BzCy, BzCx-BxCz, BxCy-ByCx)
= (Ay(BxCy-ByCx) - Az(BzCx-BxCz),
(Az(ByCz-BzCy) - Ax(BxCy-ByCx),
(Ax(BzCx-BxCz) - Ay(ByCz-BzCy))
= (AyBxCy-AyByCx-AzBzCx+AzBxCz + (AxBxCx - AxBxCx), … (=0を足す)
AzByCz-AzBzCy-AxBxCy+AxByCx + (AyByCy - AyByCy), … (=0を足す)
AxBzCx-AxBxCz-AyByCz+AyBzCy + (AzBzCz - AzBzCz)) … (=0を足す)
= (Bx(AxCx+AyCy+AzCz) - Cx(AxBx+AyBy+AzBz),
By(AzCz+AxCx+AyCy) - Cy(AzBz+AxBx+AyBy),
Bz(AxCx+AyCy+AzCz) - Cz(AxBx+AyBy+AzCz))
= (A・C)B-(A・B)C
A×(B×C) = (A・C)B-(A・B)C
▼ 角速度ω
ω = (0, 0, ω)
R = (x, y, z) = (rcosωt, rsinωt, 0)
V = ω×R
= (ωyz-ωzy, ωzx-ωxz, ωxy-ωyx)
= (-ωzy, ωzx, 0)
= (-ωy, ωx, 0)
A = ω×V
= (ωyvz-ωzvy, ωzvx-ωxvz, ωxvy-ωyvx)
= (-ωzvy, ωzvx, 0)
= (-ω(ωx), ω(-ωy), 0)
= (-ω2x, -ω2y, 0)
A = ω×(ω×R) = (ω・R)ω - (ω・ω)R … (ω⊥R)より
= -(ω・ω)R
= -|ω|2R
▼ 向心力F
r = √(x2 + y2)
v = |V| = |ω × R| = √{(-ωy)2 + (ωx)2}
= ω√(y2 + x2) = rω
ω = v/r
F = mA = m(ax, ay, az) = m(-ω2x, -ω2y, 0) = (-mω2x, -mω2y, 0)
|F| = F・F = √{(-mω2x)2 + (-mω2y)2} = mω2√(x2 + y2)
= mrω2 = mr(v/r)2 = mv2/r
■ 結果
▼ 角速度ω
ω = (0, 0, ω)
R = (x, y, z) = (rcosωt, rsinωt, 0)
V = ω × R = (-ωy, ωx, 0)
A = ω × V = (-ω2x, -ω2y, 0)
A = ω×(ω×R) = -|ω|2R
▼ 向心力F
F = mA = (-mω2x, -mω2y, 0)
|F| = mv2/r