中和滴定曲線 (2回目)
2026/1/6(火)
中和滴定曲線 (2回目)
(neutralization titration)
1価の酸と1価の塩基の滴定曲線
c,c',V,V'は元の酸・塩基のモル濃度と体積 Ca = cV/(V+V') , Cb = c'V'/(V+V') は滴定中の酸・塩基のモル濃度 水溶液中に[HA],[A-],[H+],[BOH],[B+],[OH-]が存在する Ca = [A-] + [HA] , Cb = [B+] + [BOH] … 酸・塩基のモル濃度 Kw = [H+][OH-] … 水のイオン積 Ka = [H+][A+]/[HA] … 酸の電離定数 Kb = [B+][OH-]/[BOH] … 塩基の電離定数 [B+] + [H+] = [A-] + [OH-] … 電気的中性 |
中和滴定曲線 (1回目)
より
[An-] = CaKa/Σj=0n([H+]jΠi=1n-jKai) Caαk = [Hn-kAk-] = [H+]n-k[An-]/(Πi=k+1nKai) x = Σ(k[Hn-kAk-]) = Σ{k[H+]n-k(Πi=2kKai)}[An-]/(Πi=2nKai) [Bm+] = CbKb/Σj=0m([OH-]jΠi=1m-jKbi) Cbβk = [B(OH)m-kk+] = [OH-]m-k[Bm+]/(Πi=k+1mKbi) y = Σ(k[B(OH)m-kk+]) = Σ{k[OH-]m-k(Πi=2kKbi)}[Bm+]/(Πi=2mKbi) [OH-] = Kw/[H+] [H+]2 - (x - y)[H+] - Kw = 0 |
n = 1
[An-] = CaKa/Σj=0n([H+]jΠi=1n-jKai)より
[A-] = CaKa/Σj=01([H+]jΠi=11-jKai)
= CaKa/([H+]0Πi=11-0Kai+[H+]1Πi=11-1Kai)
= CaKa/(Ka1+[H+]) = CaKa/(Ka+[H+])
Caα = [A-] = CaKa/(Ka+[H+])
x = Σ(k[Hn-kAk-]) = [A-]
Cbβ = [B+] = CbKb/(Kb+[OH-]) = [H+]CbKb/([H+]Kb+Kw)
y = Σ(k[B(OH)m-kk+]) = [B+]
-(x-y)[H+] = -([A-]-[B+])[H+]
= [H+]2CbKb/([H+]Kb+Kw) - [H+]CaKa/(Ka+[H+])
= {[H+]2CbKb(Ka+[H+])-[H+]CaKa([H+]Kb+Kw)}/{([H+]Kb+Kw)(Ka+[H+])}
= ([H+]2CbKaKb+[H+]3CbKb-[H+]2CaKaKb-[H+]CaKaKw)
/ ([H+]KaKb+KaKw+[H+]2Kb+[H+]Kw)
= {CbKb[H+]3+KaKb(Cb-Ca)[H+]2-CaKaKw[H+]}
/ (Kb[H+]2+(KaKb+Kw)[H+]+KaKw)
を
[H+]2 - (x - y)[H+] - Kw = 0
に代入
(Kb[H+]2+(KaKb+Kw)[H+]+KaKw)[H+]2
+ {CbKb[H+]3+KaKb(Cb-Ca)[H+]2-CaKaKw[H+]}
- (Kb[H+]2+(KaKb+Kw)[H+]+KaKw)Kw
= Kb[H+]4+(KaKb+Kw)[H+]3+KaKw[H+]2
+ CbKb[H+]3+KaKb(Cb-Ca)[H+]2-CaKaKw[H+]
- KbKw[H+]2-Kw(KaKb+Kw)[H+]-KaKw2
= Kb[H+]4+{Kw+(Ka+Cb)Kb}[H+]3+{(Ka-Kb)Kw+(Cb-Ca)KaKb}[H+]2
-{Kw+(Kb+Ca)Ka+Kw}Kw[H+]-KaKw2 = 0
Kb[H+]4+{Kw+(Ka+Cb)Kb}[H+]3+{(Ka-Kb)Kw+(Cb-Ca)KaKb}[H+]2 -{Kw+(Kb+Ca)Ka}Kw[H+]-KaKw2 = 0 Ca = cV/(V+V') , Cb = c'V'/(V+V') Caα = [A-] = CaKa/(Ka+[H+]) Cbβ = [B+] = [H+]CbKb/([H+]Kb+Kw) |
V'を求める式
Kb[H+]4+{Kw+(Ka+c'B'/(V+V'))Kb}[H+]3
+ {(Ka-Kb)Kw+(c'V'-cV)/(V+V')KaKb}[H+]2
-{Kw+(Kb+cV/(V+V'))Ka}Kw[H+]-KaKw2 = 0
より
(V+V')Kb[H+]4+{(V+V')Kw+(V+V')KaKb+c'V'Kb}[H+]3
+{(V+V')(Ka-Kb)Kw+(c'V'-cV)KaKb}[H+]2
-{(V+V')Kw+(V+V')KaKb+cVKa}Kw[H+]-KaKw2 = 0
A = Kb[H+]4+Kw[H+]3+KaKb[H+]3+(Ka-Kb)Kw[H+]2-Kw2[H+]-KaKbKw[H+]
= Kb[H+]4+(Kw+KaKb)[H+]3+(Ka-Kb)Kw[H+]2-(Kw+KaKb)Kw[H+]
= [H+]{Kb[H+]3+(Kw+KaKb)[H+]2+(Ka-Kb)Kw[H+]-(Kw+KaKb)Kw}
= [H+]{[H+]{[H+]{Kb[H+]+(Kw+KaKb)}+(Ka-Kb)Kw}-(Kw+KaKb)Kw}
B = cKaKb[H+]2+cKaKw[H+]+KaKw2 - A = (Kb[H+]+Kw)cKa[H+]+KaKw2 - A
C = c'Kb[H+]3+c'KaKb[H+]2 + A = ([H+]+Ka)c'Kb[H+]2 + A
A = [H+]{[H+]{[H+]{Kb[H+]+(Kw+KaKb)}+(Ka-Kb)Kw}-(Kw+KaKb)Kw} B = (Kb[H+]+Kw)cKa[H+]+KaKw2 - A C = ([H+]+Ka)c'Kb[H+]2 + A V' = (B/C)V |
以下、Excelによる描画
