中和滴定曲線 (3回目)
2026/1/17(土)
中和滴定曲線 (3回目)
(neutralization titration)
2価の酸と1価の強塩基の滴定曲線
c,c',V,V'は元の酸・塩基のモル濃度と体積 Ca = cV/(V+V') , Cb = c'V'/(V+V') は滴定中の酸・塩基のモル濃度 水溶液中に[H2A],[HA-],[A2-],[H+],[B+],[OH-]が存在する Ca = [A2-] + [HA-] + [H2A] , Cb = [B+] + [BOH] … 酸・塩基のモル濃度 Kw = [H+][OH-] … 水のイオン積 Ka1 = [H+][HA-]/[H2A] , Ka2 = [H+][A2-]/[HA-] … 酸の電離定数(第1,2) [B+] + [H+] = 2[A2-] + [HA-] + [OH-] … 電気的中性 |
中和滴定曲線 (1回目)
より
[An-] = CaKa/Σj=0n([H+]jΠi=1n-jKai) Caαk = [Hn-kAk-] = [H+]n-k[An-]/(Πi=k+1nKai) x = Σ(k[Hn-kAk-]) = Σ{k[H+]n-k(Πi=2kKai)}[An-]/(Πi=2nKai) [Bm+] = CbKb/Σj=0m([OH-]jΠi=1m-jKbi) Cbβk = [B(OH)m-kk+] = [OH-]m-k[Bm+]/(Πi=k+1mKbi) y = Σ(k[B(OH)m-kk+]) = Σ{k[OH-]m-k(Πi=2kKbi)}[Bm+]/(Πi=2mKbi) [OH-] = Kw/[H+] [H+]2 - (x - y)[H+] - Kw = 0 |
n = 2
[An-] = CaKa/Σj=0n([H+]jΠi=1n-jKai)より
[A2-] = CaKa/Σj=02([H+]jΠi=12-jKai)
= CaKa/([H+]0Πi=12-0Kai+[H+]1Πi=12-1Kai+[H+]2Πi=12-2Kai)
= CaKa/(Ka1Ka2+[H+]Ka1+[H+]2) = CaKa/(Ka+[H+]Ka1+[H+]2)
Caαk = [Hn-kAk-] = [H+]n-k[An-]/(Πi=k+1nKai)より
Caα1 = [HA-] = [H+]2-1[A2-]/(Πi=1+12Kai) = [H+][A2-]/Ka2
Caα2 = [A2-] = CaKa/(Ka+[H+]Ka1+[H+]2)
x = Σ(k[Hn-kAk-]) = [HA-] + 2[A2-] = [H+][A2-]/Ka2 + 2[A2-]
= ([H+]+2Ka2)[A2-]/Ka2
Cbβ = [B+] = Cb
y = Σ(k[B(OH)m-kk+]) = [B+] = Cb
-(x-y)[H+] = -{([H+]+2Ka2)[A2-]/Ka2 - Cb}[H+]
= [H+]Cb - ([H+]2+2[H+]Ka2)[A2-]/Ka2
を
[H+]2 - (x - y)[H+] - Kw = 0
に代入
[H+]2 + [H+]Cb - ([H+]2+2[H+]Ka2)[A2-]/Ka2 - Kw = 0
に
[A2-]/Ka2 = Ca(Ka/Ka2)/(Ka+[H+]Ka1+[H+]2) = CaKa1/(Ka+[H+]Ka1+[H+]2)
を代入
(Ka+[H+]Ka1+[H+]2)[H+]2 + (Ka+[H+]Ka1+[H+]2)[H+]Cb
- ([H+]2+2[H+]Ka2)CaKa1 - (Ka+[H+]Ka1+[H+]2)Kw
= [H+]2Ka+[H+]3Ka1+[H+]4+[H+]CbKa+[H+]2CbKa1+[H+]3Cb
- [H+]2CaKa1-2[H+]CaKa-KaKw-[H+]Ka1Kw-[H+]2Kw
= [H+]4+(Ka1+Cb)[H+]3+{Ka-Kw+Ka1(Cb-Ca)}[H+]2
+ {Ka(Cb-2Ca)-Ka1Kw}[H+]-KaKw
= [H+]4+(Ka1+Cb)[H+]3+{Ka1(Ka2+Cb-Ca)-Kw}[H+]2
+ Ka1{Ka2(Cb-2Ca)-Kw}[H+]-KaKw
[H+]4+(Ka1+Cb)[H+]3+{Ka1(Ka2+Cb-Ca)-Kw}[H+]2
+ Ka1{Ka2(Cb-2Ca)-Kw}[H+]-KaKw = 0
[H+]4 + (Ka1 + Cb)[H+]3 + {Ka1(Ka2 + Cb - Ca) - Kw}[H+]2 + Ka1{Ka2(Cb - 2Ca) - Kw}[H+] - Ka1Ka2Kw = 0
Ca = cV/(V+V') , Cb = c'V'/(V+V')
Caα1 = [HA-] = [H+][A2-]/Ka2 Caα2 = [A2-] = CaKa1Ka2/(Ka1Ka2+[H+]Ka1+[H+]2) Cbβ = [B+] = Cb |
V'を求める式
[H+]4 + {Ka1 + c'V'/(V+V')}[H+]3
+ {Ka1{Ka2 + (c'V'-cV)/(V+V')} - Kw}[H+]2
+ Ka1{Ka2(c'V'-2cV)/(V+V') - Kw}[H+] - Ka1Ka2Kw = 0
より
(V+V')[H+]4 + {(V+V')Ka1 + c'V'}[H+]3
+ {Ka1((V+V')Ka2 + (c'V'-cV)) - (V+V')Kw}[H+]2
+ Ka1{Ka2(c'V'-2cV) - (V+V')Kw}[H+] - (V+V')Ka1Ka2Kw = 0
A = [H+]4 + Ka1[H+]3 + Ka1(Ka2 - Kw)[H+]2 - Ka1Kw[H+] - Ka1Ka2Kw
= [H+]{[H+]3 + Ka1[H+]2 + Ka1(Ka2 - Kw)[H+] - Ka1Kw} - Ka1Ka2Kw
= [H+]{[H+]{[H+]2 + Ka1[H+] + Ka1(Ka2 - Kw)} - Ka1Kw} - Ka1Ka2Kw
= [H+]{[H+]{[H+]([H+] + Ka1) + Ka1(Ka2 - Kw)} - Ka1Kw} - Ka1Ka2Kw
B = -(-cKa1[H+]2 - 2cKa1Ka2[H+] + A)
= [H+]cKa1([H+] + 2Ka2) - A
C = c'[H+]3 + c'Ka1[H+]2 + c'Ka1Ka2[H+] + A
= [H+]c'{[H+]2 + Ka1[H+] + Ka1Ka2} + A
= [H+]c'{[H+]([H+] + Ka1) + Ka1Ka2} + A
A = [H+]{[H+]{[H+]([H+] + Ka1) + Ka1(Ka2 - Kw)} - Ka1Kw} - Ka1Ka2Kw B = [H+]cKa1([H+] + 2Ka2) - A C = c'[H+]{[H+]([H+] + Ka1) + Ka1Ka2} + A V' = (B/C)V |
Excelによる描画
