N88-BASICで回転楕円体 (2回目)
2022/10/12(水)
N88-BASICで回転楕円体 (2回目)
扁平回転楕円体面(短半径a,長半径b)
x2/a2 + y2/b2 = 1をx軸で回転
x2/a2 + y2/b2 + z2/b2 = 1
について
前回
https://ulprojectmail.blogspot.com/2022/10/n88-basicspheroid-1.html
N88-BASICで回転楕円体 (1回目)
より
扁平回転楕円体面(短半径a,長半径b)
x2/a2 + y2/b2 + z2/b2 = 1
で囲まれた体積は
(4/3)πab2
となる
扁平楕円体面の表面積S
S = 2πb{(a2/c)ln{(b+c)/a} + b}
焦点距離c = √(b2-a2) (a<b)
を求める
楕円x2/a2 + y2/b2 = 1
をx軸周りに回転させて
楕円体を作ると考える
焦点距離c = √|a2-b2|
c2 = a2-b2 (a>b)
c2 = b2-a2 (a<b)
回転体の半径yは
x2/a2 + y2/b2 = 1より
y = f(x) = √{b2(1 - x2/a2)}
y2 = b2(1 - x2/a2)
y' = f'(x)とし
x2/a2 + y2/b2 = 1の両辺をxで微分すると
2x/a2 + 2yy'/b2 = 0
yy' = -b2x/a2
(yy')2 = b4x2/a4
y2+(yy')2 = b2(1 - x2/a2) + b4x2/a4
= b2(1 - x2/a2 + b2x2/a4)
= b2{1 - (a2 - b2)(x2/a4)}
y2+(yy')2 = b2(1 - c2x2/a4) (a>b)
y2+(yy')2 = b2(1 + c2x2/a4) (a<b)
S = 2π∫√{y2+(yy')2} dx [x=-a~a]
= 4π∫√{y2+(yy')2} dx [x=0~a]
= 4πb∫√(1 + c2x2/a4) dx [x=0~a] (a<b)
ここで、
cx/a2 = sinhθと置くと
x = (a2/c)sinhθ、θ= sinh-1(cx/a2)
dx/dθ = (a2/c)coshθ、dx = (a2/c)coshθ dθ
sinh 0 = -isin i0 = 0より
x = 0のとき、θ0= sinh-1(0) = 0
x = aのとき、θa= sinh-1(c/a)
sinhθa = c/a
c2 = b2-a2 (a<b)より
coshθa = √(1 + sinh2θa) = √(1 + c2/a2)
= √{(a2 + c2)/a2} = √(b2/a2) = b/a
S = 4πb∫√(1 + c2x2/a4) dx [x=0~a]
= 4πb∫√(1 + sinh2θ)(a2/c)coshθ dθ [θ=0~θa]
= 4π(a2b/c)∫cosh2θ dθ [θ=0~θa]
= 2π(a2b/c)∫(1 + cosh 2θ) dθ [θ=0~θa]
= 2π(a2b/c)[θ + (1/2)sinh2θ] [θ=0~θa]
= 2π(a2b/c)[θ + sinhθcoshθ] [θ=0~θa]
= 2π(a2b/c){(θa + sinhθacoshθa)
- (0 + sinh 0 cosh 0)}
= 2π(a2b/c){(sinh-1(c/a) + (c/a)(b/a))
- (0 + 0・cosh 0)}
= 2π{(a2b/c)sinh-1(c/a) + b2}
x = c/aと置くと、c2 = b2-a2 (a<b)より
x2 + 1 = c2/a2 + a2/a2 = b2/a2
sinh-1(x) = ln{x + √(x2 + 1)}より
sinh-1(c/a) = ln(c/a + b/a)
= ln(c/a + b/a) = ln{(b+c)/a}
S = 2π{(a2b/c)sinh-1(c/a) + b2}
= 2πb{(a2/c)ln{(b+c)/a} + b}
双曲線関数
sinhθ = (eθ-e-θ)/2 = -isin iθ
coshθ = (eθ+e-θ)/2 = cos iθ
tanhθ = sinhθ/coshθ
(sinhθ)' = (-isin iθ)' = cos iθ = coshθ
(coshθ)' = (cos iθ)' = -isin iθ = sinhθ
cosh2θ-sinh2θ = cos2iθ-(-sin2iθ) = 1
1 + sinh2θ = cosh2θ
sinh2θ = -isin i2θ
= -i(sin iθ cos iθ + cos iθ sin iθ)
= -2i sin iθ cos iθ = 2sinhθcoshθ
cosh2θ = cos i2θ
= cos iθ cos iθ - sin iθ sin iθ
= cos2iθ - (1 - cos2iθ) = 2cos2iθ - 1
= 2cosh2θ - 1
2cosh2θ = cosh2θ + 1
(sinh2θ)' = 2cosh2θ
x = sinhθ = (eθ-e-θ)/2
eθ - e-θ - 2x = 0 (eθを掛ける)
(eθ)2 - 2xeθ - 1 = 0
eθ = x±√(x2 + 1)
eθ ≧ 0、x < √(x2 + 1)より
eθ = x + √(x2 + 1)
θ = ln{x + √(x2 + 1)} = sinh-1(x)
N88-BASIC互換?VL,NL,XL-BASICと
blg~.zip(sphe002.bas)は
以下のリンクからダウンロードできます
N88-BASICで回転楕円体 (2回目)
扁平回転楕円体面(短半径a,長半径b)
x2/a2 + y2/b2 = 1をx軸で回転
x2/a2 + y2/b2 + z2/b2 = 1
について
前回
https://ulprojectmail.blogspot.com/2022/10/n88-basicspheroid-1.html
N88-BASICで回転楕円体 (1回目)
より
扁平回転楕円体面(短半径a,長半径b)
x2/a2 + y2/b2 + z2/b2 = 1
で囲まれた体積は
(4/3)πab2
となる
扁平楕円体面の表面積S
S = 2πb{(a2/c)ln{(b+c)/a} + b}
焦点距離c = √(b2-a2) (a<b)
を求める
楕円x2/a2 + y2/b2 = 1
をx軸周りに回転させて
楕円体を作ると考える
焦点距離c = √|a2-b2|
c2 = a2-b2 (a>b)
c2 = b2-a2 (a<b)
回転体の半径yは
x2/a2 + y2/b2 = 1より
y = f(x) = √{b2(1 - x2/a2)}
y2 = b2(1 - x2/a2)
y' = f'(x)とし
x2/a2 + y2/b2 = 1の両辺をxで微分すると
2x/a2 + 2yy'/b2 = 0
yy' = -b2x/a2
(yy')2 = b4x2/a4
y2+(yy')2 = b2(1 - x2/a2) + b4x2/a4
= b2(1 - x2/a2 + b2x2/a4)
= b2{1 - (a2 - b2)(x2/a4)}
y2+(yy')2 = b2(1 - c2x2/a4) (a>b)
y2+(yy')2 = b2(1 + c2x2/a4) (a<b)
S = 2π∫√{y2+(yy')2} dx [x=-a~a]
= 4π∫√{y2+(yy')2} dx [x=0~a]
= 4πb∫√(1 + c2x2/a4) dx [x=0~a] (a<b)
ここで、
cx/a2 = sinhθと置くと
x = (a2/c)sinhθ、θ= sinh-1(cx/a2)
dx/dθ = (a2/c)coshθ、dx = (a2/c)coshθ dθ
sinh 0 = -isin i0 = 0より
x = 0のとき、θ0= sinh-1(0) = 0
x = aのとき、θa= sinh-1(c/a)
sinhθa = c/a
c2 = b2-a2 (a<b)より
coshθa = √(1 + sinh2θa) = √(1 + c2/a2)
= √{(a2 + c2)/a2} = √(b2/a2) = b/a
S = 4πb∫√(1 + c2x2/a4) dx [x=0~a]
= 4πb∫√(1 + sinh2θ)(a2/c)coshθ dθ [θ=0~θa]
= 4π(a2b/c)∫cosh2θ dθ [θ=0~θa]
= 2π(a2b/c)∫(1 + cosh 2θ) dθ [θ=0~θa]
= 2π(a2b/c)[θ + (1/2)sinh2θ] [θ=0~θa]
= 2π(a2b/c)[θ + sinhθcoshθ] [θ=0~θa]
= 2π(a2b/c){(θa + sinhθacoshθa)
- (0 + sinh 0 cosh 0)}
= 2π(a2b/c){(sinh-1(c/a) + (c/a)(b/a))
- (0 + 0・cosh 0)}
= 2π{(a2b/c)sinh-1(c/a) + b2}
x = c/aと置くと、c2 = b2-a2 (a<b)より
x2 + 1 = c2/a2 + a2/a2 = b2/a2
sinh-1(x) = ln{x + √(x2 + 1)}より
sinh-1(c/a) = ln(c/a + b/a)
= ln(c/a + b/a) = ln{(b+c)/a}
= 2πb{(a2/c)ln{(b+c)/a} + b}
sinhθ = (eθ-e-θ)/2 = -isin iθ
coshθ = (eθ+e-θ)/2 = cos iθ
tanhθ = sinhθ/coshθ
(sinhθ)' = (-isin iθ)' = cos iθ = coshθ
(coshθ)' = (cos iθ)' = -isin iθ = sinhθ
cosh2θ-sinh2θ = cos2iθ-(-sin2iθ) = 1
1 + sinh2θ = cosh2θ
sinh2θ = -isin i2θ
= -i(sin iθ cos iθ + cos iθ sin iθ)
= -2i sin iθ cos iθ = 2sinhθcoshθ
cosh2θ = cos i2θ
= cos iθ cos iθ - sin iθ sin iθ
= cos2iθ - (1 - cos2iθ) = 2cos2iθ - 1
= 2cosh2θ - 1
2cosh2θ = cosh2θ + 1
(sinh2θ)' = 2cosh2θ
x = sinhθ = (eθ-e-θ)/2
eθ - e-θ - 2x = 0 (eθを掛ける)
(eθ)2 - 2xeθ - 1 = 0
eθ = x±√(x2 + 1)
eθ ≧ 0、x < √(x2 + 1)より
eθ = x + √(x2 + 1)
θ = ln{x + √(x2 + 1)} = sinh-1(x)
blg~.zip(sphe002.bas)は
以下のリンクからダウンロードできます
Readme.txtを読んで遊んで下さい