積分の公式 (4回目)

2025/10/30(木)
積分の公式 (4回目)
 
(integral)
 
 公式
▼ 三角関数
sin2x = 2sinxcosx
cos2x = cos2x-sin2x
= (1-sin2x)-sin2x = 1-2sin2x
= cos2x-(1-cos2x) = 2cos2x-1
1-cosx = 2sin2(x/2)
1+cosx = 2cos2(x/2)
 
▼ 双曲線関数
sinh(x) = {exp(x)-exp(-x)}/2
cosh(x) = {exp(x)+exp(-x)}/2
tanh(x) = {exp(x)-exp(-x)}/{exp(x)+exp(-x)}
 
▼ 逆双曲線関数1
y = sinh(x) = {exp(x)-exp(-x)}/2
2yexp(x) = exp(2x)-1
exp(2x) - 2yexp(x) - 1 = 0
exp(x) = y±√(y2+1) ≧ 0
x = log{y+√(y2+1)}
sinh-1(y) = log|y+√(y2+1)|
 
▼ 逆双曲線関数2
y = cosh(x) = {exp(x)+exp(-x)}/2
2yexp(x) = exp(2x)+1
exp(2x) - 2yexp(x) + 1 = 0
exp(x) = y±√(y2-1) ≧ 0
x = log{y+√(y2-1)}  … (y ≧ 1)
cosh-1(y) = log|y+√(y2-1)|
 
 
 微分
▼ 逆双曲線関数の微分1
{sinh-1(x)}' = {log{x+√(x2+1)}}'
= {x+√(x2+1)}'{1/{x+√(x2+1)}}
= {1+(x2+1)'(1/2)/√(x2+1)}/{x+√(x2+1)}
= {1+x/√(x2+1)}/{x+√(x2+1)}
= {√(x2+1)+x}/{x√(x2+1)+(x2+1)}
= {(x2+1)-x2}/[{√(x2+1)-x}{x√(x2+1)+(x2+1)}]
= 1/{x(x2+1)-x2√(x2+1)+(x2+1)√(x2+1)-x(x2+1)}
= 1/{(-x2+(x2+1)√(x2+1)}
= 1/√(x2+1)
{sinh-1(x)}' = 1/√(x2+1)
 
▼ 逆双曲線関数の微分1
{cosh-1(x)}' = {log{x+√(x2-1)}}'
= {x+√(x2-1)}'{1/{x+√(x2-1)}}
= {1+(x2-1)'(1/2)/√(x2-1)}/{x+√(x2-1)}
= {1+x/√(x2-1)}/{x+√(x2-1)}
= {√(x2-1)+x}/{x√(x2-1)+(x2-1)}
= {(x2-1)-x2}/[{√(x2-1)-x}{x√(x2-1)+(x2-1)}]
= -1/{x(x2-1)-x2√(x2-1)+(x2-1)√(x2-1)-x(x2-1)}
= -1/{(-x2+(x2-1)√(x2-1)}
= 1/√(x2-1)
{cosh-1(x)}' = 1/√(x2-1)
 
 
 積分
▼ 公式
https://ulprojectmail.blogspot.com/2025/10/integral-2.html
積分の公式 (2回目)
より
 
∫√(r2 + x2)dx = (1/2){x√(r2 + x2) + r2tanh-1(x/√(r2 + x2))} + C
∫√(r2 - x2)dx = (1/2){x√(r2 - x2) + r2tan-1(x/√(r2 - x2))} + C
∫{1/√(r2 + x2)}dx = tanh-1{x/√(r2 + x2)} + C
∫{1/√(r2 - x2)}dx = tan-1{x/√(r2 - x2)} + C
 
▼ 積分公式1
∫{1/√(x2+1)}dx = sinh-1(x) + C = log|x+√(x2+1)| + C
を検証
r = 1と置いて
∫{1/√(r2 + x2)}dx = tanh-1{x/√(r2 + x2)} + C
∫{1/√(12 + x2)}dx = tanh-1{x/√(12 + x2)} + C
= tanh-1{x/√(1 + x2)} + C
= (1/2)log|{1+x/√(1 + x2)}/{1-x/√(1 + x2)}| + C
= (1/2)log|{√(1 + x2)+x}/{√(1 + x2)-x}| + C
= (1/2)log|{√(1 + x2)+x}2/{(1 + x2)-x2}| + C
= (1/2)log|{√(1 + x2)+x}2| + C
= log|√(1 + x2)+x| + C
 
▼ 積分公式2
∫{1/√(x2-1)}dx = cosh-1(x) + C = log|x+√(x2-1)| + C
を検証
r = iと置いて
∫{1/√(r2 + x2)}dx = tanh-1{x/√(r2 + x2)} + C
∫{1/√(i2 + x2)}dx = tanh-1{x/√(i2 + x2)} + C
= tanh-1{x/√(x2 - 1)} + C
= (1/2)log|{1+x/√(x2 - 1)}/{1-x/√(x2 - 1)}| + C
= (1/2)log|{√(x2 - 1)+x}/{√(x2 - 1)-x}| + C
= (1/2)log|{√(x2 - 1)+x}2/{(x2 - 1)-x2}| + C
= (1/2)log|-{√(x2 - 1)+x}2| + C
= log|√(x2 - 1)+x| + C
 
 
 結果
▼ 定義域
xの定義域に注意
 
▼ 微分
{sinh-1(x)}' = 1/√(x2+1)
{cosh-1(x)}' = 1/√(x2-1)
 
▼ 積分
∫{1/√(x2+1)}dx = sinh-1(x) + C = log|x+√(x2+1)| + C
∫{1/√(x2-1)}dx = cosh-1(x) + C = log|x+√(x2-1)| + C
 

このブログの人気の投稿

NEWS

N88-BASICでゲーム (1回目)

d88ファイルの変換 (1回目)